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The mobility of localized high-amplitude excitations of the discrete nonlinear Schrödinger equation is
studied. The excitations can either be pinned at the lattice or they can propagate depending on their energy and
particle number. Such localized excitation can emit or absorb waves with a low amplitude which changes the
amount of these quantities in the excitation. For statistical reasons, the excitations absorb a high amount of
energy per particle through their interaction with low-amplitude waves. They can only move if their energy
decreases temporarily either by a random fluctuation or by an external force.
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I. INTRODUCTION

High-amplitude localized excitations that emerge sponta-
neously from a background of low-amplitude waves are a
dynamical property of many spatiotemporal systems. Ex-
amples for this are the self-focusing of light in Kerr-
nonlinear media[1], collapses in plasmas[2], and Bose-
Einstein condensates[3], and possibly also the formation of
extraordinarily high waves in the ocean[4]. Self-focusing
behavior is a characteristic of the nonlinear Schrödinger
equation and its various modifications that govern these sys-
tems. Spatially discrete systems in solid state physics[5] or
molecular dynamics[6] and arrays of coupled optical fibers
[7,8] can be described by ordinary differential equations such
as the discrete nonlinear Schrödinger equation(DNLS):

i
] fn

] t
= fn+1 + fn−1 + ufnu2fn s1d

for complex amplitudesfn at sitesn. Equation(1) derives as
iḟn=]H /]fn

* from the Hamiltonian (or “energy”) H
=onsfnfn+1

* +fn
*fn+1d+ 1/2fn

2fn
*2 which is a conserved

quantity. The modulus-square norm(or “particle number”)
A=on fnfn

* is a second conserved quantity of this equation.
An interesting phenomenon in this spatially discrete system
is the trapping of intensity peaks: High-amplitude localized
solutions[9] interact most strongly with the discrete struc-
ture of the supporting medium, so that they are pinned to the
lattice for most of the time and rarely migrate to a neighbor-
ing lattice site. This is shown in a simulation[Figs. 1(a) and
1(b)] where the DNLS withN=1024 lattice sites and peri-
odic boundary conditions has been integrated with spatially
homogeneous low-amplitude initial conditionsfnst=0d=0.3.
This homogeneous state is phase unstable, and within a few
hundred time units a few high-amplitude excitations emerge
from a disordered low-amplitude phonon background. The
typical amplitude of an excitation isufu<2 at one central
site, and withufu<0.5 at its two neighbors. The amplitudes
at sites remote from these peaks are mostly below their ini-
tial values ufu,0.3, with an exponentially decaying prob-
ability of higher amplitudes. Figure 1(a) shows the profile of
the squared amplitudeufnstdu2 as a function of time(from
1058 to 1073 time units after the beginning of the integra-
tion) in a small segment(11 lattice sites) of the chain. It

shows the rare event of localized excitation that migrates
from one lattice site to a neighboring lattice site. At first a
high amount of particles(up to uf125u2<4.5) is gathered at
the site 125, but att<1066 these particles move to the
neighboring lattice site 126 within 3 time units.

The interaction with the low-amplitude waves is crucial
for the migration of the peak. This interaction is studied in a
second numerical experiment with Eq.(1) for a chain of 512
lattice sites[Fig. 1(c)]. The initial condition is a single iso-
lated excitation in an environment of low-amplitude waves
with a white noise spectrum. This system is integrated over
10,000 time units for various peak-heights and wave-
amplitudes and it is observed whether the excitation migrates
or not. Fig. 1(c) shows the time-average amplitudeufupeak of
the highest localized structure that has been found to migrate
at least once during the 10 000 time units of the integration
as a function of the surrounding low-amplitude waves. The
lattice pinning turns out to be stronger if the amplitude of the
excitation is higher. The probability for a migration of a peak

FIG. 1. (a) Particle densityufnstdu2 at 11 lattice sites within a
chain of 1024 lattice sites. A migration occurs during this interval of
15 time units after a long integration time.(b) The same interval in
space and time as(a). Dark gray means a high particle densityufnu2.
(c) The maximum heightufnu of peaks that are found to migrate as
a function of the particle densityA/N of the surrounding low-
amplitude waves.
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decreases rapidly with its height, and the threshold for the
pinning of peaks is aboutufu<2, increasing slightly with the
level of the surrounding low-amplitude waves. Peaks that are
higher than the one of Figs. 1(a) and 1(b) migrate very rarely.
Smaller excitations are pinned only if the surrounding waves
have a very low amplitude.

The reason for this pinning effect[10–12] and its possible
applications in optical signal switching[13] have been inves-
tigated in many papers. Unlike continuous systems whose
solitary solutions have a Goldstone mode, solutions of dis-
crete systems change in shape when they propagate in space.
The dynamics of solitary long-wave solutions is well ap-
proximated by a continuum description, but high-amplitude
excitations with a width of the order of the lattice constant
are subjected to a strong spatially periodic force that impedes
their movement. In a generic case where the lattice dynamics
are nonintegrable, no general computation scheme for mov-
ing solutions is available. Numerically, one finds narrow soli-
tary waves that propagate over short distances in the lattice
while they radiate low-amplitude waves. Finally, they are
either trapped or even disappear completely. This shows
again the importance of the interaction between strongly
nonlinear excitations and phonon-like waves. Stable local-
ized solutions of the DNLS are statically pinned to the lat-
tice. One approach to capture this feature uses the concept of
the Peierls-Nabarro barrier that originally describes how the
periodic lattice potential of crystals prevents the migration of
defects unless some external force exceeds a threshold value.
This approach[10] asserts that the migration occurs via an
intermediate state with a different energy content, which re-
quires a temporary change of the energy of the excitation.
This effective pinning energy is not, however, a fixed barrier
caused by the lattice because it depends also on the ampli-
tude of the excitation itself[11]. It has been pointed out[14]
that this approach assumes the conservation of the action
during the migration. Alternative paths with temporarily
changing amplitudes could migrate without any change of
energy. Hence, the amount of particles are crucial both for
the pinning and migration of localized excitations.

This paper explains the pinning and the possibility of mi-
grations of localized excitations interacting with low-
amplitude waves as a statistical process. It makes use of the
recent progress of the understanding of localized solutions as
statistical phenomena[15,16]. Localized excitations are con-
sidered in connection with surrounding low-amplitude
waves. These waves may be described in a linear approxi-
mation, so they are sometimes referred to as phonons. De-
pending on the temperature of these waves, the excitations
can grow or they can be melted away. This approach derives
the amounts of energy and particles in the localized excita-
tions from the thermodynamic potentials of surrounding low-
amplitude waves. This explains the high density of both
quantities within the excitation.

First, this paper shows that the trajectory of migrations
can be described by an idealized dimer model that reduces
the lattice to two sites. This migratory orbit exists only for
peaks below a certain critical energy. Above this threshold,
the energy conservation prevents any migration of peaks.

Second, excitations of the full lattice and their interaction
with low-amplitude waves are considered. Perfect localized

excitations with no surrounding low-amplitude waves are al-
ways pinned and they cannot migrate spontaneously. Migra-
tions can be triggered, however, in the presence of surround-
ing of low-amplitude waves. A migration to a neighboring
lattice site requires an intermediate fluctuation of the energy
of the excitation that is statistically unfavorable.

Most figures 1(a), 1(b), 2(a), 2(b), 3(b), 6, 8, and 9 derive
from one numerical simulation of a migration in Eq.(1). It
has been confirmed by other similar simulations that this
process of migration is representative.

II. LEVEL SETS AND THE PATH OF THE MIGRATION

A. Conservation laws during the migration

Figure 1 indicates that during the migration there is a high
particle density only at the two lattice sitesn=125, the initial
location of the peak, and atn=126, its location after it has
moved. Fig. 2(a) shows the evolution of the particle numbers
at these two lattice sites during the migration. The particle
number at the site 125 decreases fromuf125u2<4.6 to a value
close to zero. Simultaneously, the particle number at the
neighboring site 126 increases from around zero touf126u2
<4.5. The total number of particles at the two sites is almost
constant uf125u2+ uf126u2<4.6±0.1, and there is little ex-
change of particles between these two lattice sites and their
neighbors where the amplitudes remain small during the mi-
gration. The migration is basically a transfer of particles
from the “donor” lattice site 125 to the neighboring “accep-
tor” site 126. Corresponding to the growth and decay of the
adjacent peaks, the nonlinear energyuf126u4/2 grows and
uf125u4/2 decays[Fig. 2(b)]. Unlike the particle number, the
sum of these two nonlinear energy contributions is not con-
served and it decreases temporarily during the migration.
The energy that is released from the nonlinearity is stored in
the central bond so that the coupling energy 2Resf125f126

* d
grows temporarily[Fig. 2(b)]. The sumuf125u4/2+uf126u4/2

FIG. 2. Particle numberuf125u2 and uf126u2 (a,c) and nonlinear
energiesuf125u4/2, uf126u4/2 and coupling energy 2 Resf125f126

* d
(b, d) during the migration. The numerical data(a),(b) describe the
migration of Figs. 1(a) and 1(b) as a function of time fors1064.4
ø tø1067.5d. The analytical data(c),(d) are functions of the param-
etern [see Eq.(4)].
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+2 Resf125f126
* d of the nonlinear energies at the two sites

and the coupling energy in the central bond is roughly con-
served.

This approximate local conservation of energy and par-
ticles at two sites suggests to model the migration process by
a perfectly isolated dimer of only two oscillatorsfl andfl+1,
with a constant particle number

Ad = uflu2 + ufl+1u2 s2d

and a constant energy that includes the nonlinear contribu-
tion from the two sites and the energy from the central bond

Hd =
1

2
uflu4 +

1

2
ufl+1u4 + 2 Resflfl+1d

=
1

2
uflu4 +

1

2
ufl+1u4 + 2ufluufl+1ucosa, s3d

wherea is the phase difference betweenfl and fl+1. This
model neglects smaller fluctuations of the dimer’s energy
and particle content due to interactions with the surrounding
low-amplitude oscillators.

B. Intersection of level sets

Writing the donor asfl = uflueisc+a/2d and the acceptor as
fl+1= ufl+1ueisc−a/2d, the four-dimensional phase space of the
dimer can be represented by the three coordinatesuflu, ufl+1u,
cosa, plus the trivial phase variablec. The two conservation
laws define level sets in the phase space.

Any solution conserving Eqs.(2) and (3) is restricted to
the intersection manifold of the two level sets which deter-
mines the path of the migration. Parameterized byn
P f0,1g, this onedimensional manifold is given by

flsnd = rÎ1 − neisc−a/2d

s4d
fl+1snd = rÎneisc+a/2d,

with cosa=r2În−n2/2. It connects the state(uflsn=0du=r,
ufl+1sn=0du=0) before the migration, when all particles are
gathered at the sitel, and the state after the migration
[uflsn=1du=0, ufl+1sn=1du=r], when all particles are gath-
ered atl +1. Corresponding to the solution(4), the particle
number of the initial peakuflu2=r2s1−nd decays linearly as a
function of n, while it grows asufl+1u2=r2n at the neighbor
site [Fig. 2(c)]. Similarly, the nonlinear energies decay and
grow asr4s1−nd2/2 andr4n2/2, respectively, while the bond
between the two sites stores the energyr4sn−n2d temporarily
[Fig. 2(d)]. These particle and energy densities as functions
of the parametern closely agree to the numerical data[Fig.
2(a) and 2(b)].

Figure 3(a) shows the level sets ofAd=4 andHd=8. Their
intersection set includes the initial stateuflsn=0du
=2,ufl+1sn=0du=0.

Fig. 3(b) shows the intersection line(4) of the level sets
and the trajectory of the migration of the simulation of Fig.
1. The numerical data are given as points with distances of
0.1 time units. It also shows the projections of the data to the
three planes cosa=0, uf125u=0, uf126u=0. The intersection

path closely matches the numerical trajectory.

C. Threshold of the migration

Figure 4(a) shows the intersection path that connects a
donoruflsn=0du=1.5 with an acceptorufl+1sn=1du=1.5. Fig-
ure 4(b) shows that there is no such closed connection for
uf u =2.5. The closed connection(4) exists only if the condi-
tion cosaø1 is fulfilled for all nP f0,1g. With its maximum
cosfasn=1/2dg=r2/4 at the migration’s midpointn=1/2,
this inequality is only fulfilled ifr2ø4, which corresponds to
an initial donor peak amplitudeufsn=0duø2.

Peaks withuf u .2 cannot migrate, since theufu4-energy
of the initial peak cannot be stored in the coupling term
2 Resflfl+1

* d at the midpoint of the migration. It follows
from the particle conservation that the amplitudes of the two
oscillators are uflsn=1/2du= ufl+1sn=1/2du=r /Î2 at this
point. Such a state of two neighboring peaks with a bond
(“isolated bond” or “ib” in Fig. 5 can maximally absorb the
energyHd=r4/4+r2 for a=0, or a smaller amount of energy
for a nonzero anglea. A single isolated peak(“ip” in Fig. 5
has an energyHd=r4/2. Figure 5 shows that the maximum
energy of the central-bond state is larger than the energy of
the isolated peak forAd,4 or r ,2. In this range a central
bond state with a suitablea can absorb the energy of the
initial isolated peaks. In contrast, the energy of the isolated

FIG. 3. (a) Level sets ofAd andHd for a peak heightufu=2.0 as
functions ofufnu, ufn+1u, cosa. (b) Intersection of the level sets for
ufu=2.0 (line) and the trajectory of the peak migration from the
simulation of Fig. 1(points). The time interval is[1064.5, 1067.5],
the interval between subsequent points is 0.1 time units. The dotted
lines and the crosses are the projections to the level setsuf u =0 and
cosa=0.
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peak withAd.4 is higher than the energy of any intermedi-
ate central-bond state, and the local conservation laws(2)
and (3) are incompatible with a migration.

The limit for larger corresponds to the original argument
[10] for the Peierls-Nabarro barrier in the DNLS: For an
initial donor amplitudeuflu=r, the amplitudes of donor and
acceptor will match asuflu= ufl+1u=r /Î2 at the time when
half of the particles are transferred. For larger, the quadratic
coupling energy can be neglected in comparison to the quar-
tic nonlinear energy. The energyHd< r4/4 of this state is
below the initial energyHd=r4/2, and the difference be-
tween these two energies may be regarded as a Peierls-
Nabarro barrier that pins the peak at one site.

D. Dynamics of the migration

The intersection line between the two shellsAd=const and
Hd=const is an exact solution of a migration of a peak from
the sitel to l +1 in the dimer model[12,17]. Its dynamics is
governed by

iḟl = fl+1 + uflu2fl ,

s5d
iḟl+1 = fl + ufl+1u2fl+1.

These equations are obviously integrable so that they can be
solved analytically[12,17]. Equivalently they can be trans-
formed to an equation for a particle in an effective potential
[18]. The solution reproduces the intersection path ofAd
=const andHd=const as a function of time. The solution of
Eq. (5) is

uflu = rÎf1 + cns2t,r2/4dg/2,

ufl+1u = rÎf1 − cns2t,r2/4dg/2,

cosa =
r2

4
sns2t,r2/4d,

s6d
sin a = − dns2t,r2/4d,

while c has the constant speedċ=−3r2/4. This is exactly the
intersection path(4) wherenstd= 1

2f1−cns2t ,r2/4dg has been
determined. Figure 6 shows thatuflu decays monotonically
from r to 0 while ufl+1u grows. cosa increases from 0 to its
maximumr2/4 and decays to 0 subsequently, which is only
possible if the initial amplitude isr ø2. a grows from −p /2
to a value that is less or equal 0 and decays again to −p /2.
The solution of Eq.(6) is very close(Fig. 6 wherer =1.96) to
the numerical data from the simulation of Fig. 1(a).

III. FLUCTUATIONS AND MIGRATIONS OF THE
EXCITATION

The two-site model neglects all energy and particle con-
tributions except for the donor and the acceptor site, which
leads to a qualitative shortcoming of this idealized descrip-
tion of peak migration in the DNLS equation: The orbit(6)
that connects the two excitations of the dimer is(except for
r =2) periodic in time, while sufficiently high excitations of
the full DNLS chain are pinned at one lattice site, before

FIG. 4. Level sets ofAd andHd for peak heights(a) ufu=1.5 and
(b) ufu=2.5. For the higher initial peak(b), there is no closed con-
nection betweenufnu=2.5,ufn+1u=0 andufnu=0,ufn+1u=2.5 on the
intersection set.

FIG. 5. Energy vs particle number of an ip and of two isolated
peaks with a central bond(ib). The dimer energy of both excitations
match when the particle number of the dimer isAd=4.

FIG. 6. (a) cosa and (b) uflu and ufl+1u as functions of time
during the simulation of Fig. 1(points) and for the analytic solution
of the two-site model withr =1.96 (lines) as functions of time.
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suddenly its particles are shifted to a neighboring lattice site
where the excitation is again pinned for a long time. Real
excitations are not isolated peaks at one single lattice site;
they have nonzero amplitudes at neighboring lattice sites.
They can absorb or emit low-amplitude waves. An investi-
gation of the interactions between the peak and its low-
amplitude environment can explain why the peak is locked at
one lattice site for most of the time and why it can suddenly
move to a neighboring site.

A. Stationary excitations and breathers

Excitations that are stationary in a frame rotating with the
frequencyv are solutions of

0 = fn+1 + fn−1 + ufnu2fn + vfn. s7d

Reading this set of equations as a mapsfn−1,fnd
→ sfn,fn+1d, localized excitations correspond to homoclinic
orbits that connect the fixed pointf−`=f+`=0 to itself.
Equation(7) is equivalent to the condition

0 =
]

] fn
* sH + vAd

for extrema or saddle points of the energy where the
Lagrange parameterv constrains the particle numberA.

One well-known[19] localized real solution of Eq.(7) is
site centered, i.e., the amplitudes decay symmetrically at the
left and the right of the site with the maximum amplitude
(solution cp in Fig. 7). This central-peak solution is stable, as
it has a maximum of energy for a given particle number.
Central-peak solutions at different lattice sites correspond to
different elliptic fixed points in phase space. There is no path
that connects these islands while conserving both the energy
and the particle number, and a perfect central-peak solution
will not move at all.

However, some external force applied to an excitation
may change its energy and move it to a neighboring lattice
site. In phase space, the trajectory of such a migration corre-
sponds to a path on which the particle number is conserved
while the energy varies. The external force has to bridge the
gap between the highest and the lowest energy of the exci-

tation that migrates along this path. This energy gap is obvi-
ously different for alternative paths that connect two central-
peak solutions. The smallest possible energy gap that can be
found for any such path is often referred to as the Peierls-
Nabarro barrier.

It is assumed[10] that this energy barrier is given by the
energy difference between the central-peak solution(that de-
fines the starting point and the end point of the path), and the
solution cb in Fig. 7, which is a symmetric midpoint of the
migration path. This unstable solution of Eq.(7) is a saddle
point of the energy under the constraint of fixed particle
numberA. It has a lower energy(line cb in Fig. 7) than the
site-centered solution(line cp in Fig. 7 with the same particle
content, and this gap between the lines cp and cb widens
with increasing values ofA. It seems plausible that a path
with the smallest possible change of energy will contain the
central-bond solution as the intermediate state where this in-
evitable deviation from the initial energy is reached. Any
alternative path whose energy minimum is not a saddle point
could be varied in a way that reduces the energy barrier.
However, the author is not aware of a formal proof for this.

This gap is smaller if the initial solution is not a stationary
central-peak solution, but a solution with a similar shape and
a “breathing” amplitude. Such a breather corresponds to a
periodic orbit close to the elliptic fixed point of the central-
peak solution. Such breather solutions have an energy
slightly below the line cp. Figure 7 shows the energies and
particle numbers of breathers that emerge from an initial
condition with a peak at one lattice site and a zero amplitude
everywhere else. The total energy of this central site and the
six neighbors at its left and its right are plotted for 100 inte-
gration steps of 0.25 time units each. It turns out that breath-
ers with particle numbers up toA<4 have a lower energy
than a central-bond solution with the same particle number,
and so are more likely to migrate.

The force that causes the migration of Fig. 1 is the inter-
action of the localized structure with low-amplitude oscilla-
tions at neighboring sites. This interaction changes not only
the energy of the moving structure, but also its particle con-
tent. Figure 8 compares the amounts of energy and particles
(irregular line) in the localized excitation from Fig. 1(a) with
the energy and particles of stationary central-peak and
central-bond excitations. In Fig. 8(b), the amount of energy

FIG. 7. Energy vs particles for the stationary central-peak(cp)
solution and the central-bond(cb) solution(lines) and for breathers
with various heights(points).

FIG. 8. Trace of the energy vs the particle number of the exci-
tation of Fig. 1(a) over 60 time units(600 integration steps of 0.1
time units each) from t=1035 tot=1095. The migration occurs at
t<1066.(a) shows the energy and particles of only the two central
lattice sites 125 and 126.(b) shows these quantities measured in a
broader patch of 13 lattice sites. The lines ip, ib, cp, and cb are the
same as in Figs. 5 and 7.
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and particles is measured in a patch of 13 lattice sites with
the peak at the center in a period of 60 time units during
which the migration occurs. The energy content changes
relatively little compared to the particle number, which is
due to the low energy of the low-amplitude waves. The
energy-particle trace of the excitation is in the region of the
central-bond solution(line cb), well below the line cp. The
trace has to be below the line cb at least at some point of the
migration, which is actually the case for much of the time.
The actual migration corresponds to the largest temporary
increase of the particle number, which reachesA=5.5 for a
short period of time.

This balance concerns the total energy and particle num-
ber of the excitation. In addition to this condition, enough
particles need to be available in the center of the excitation
during the migration. Figure 8(a) gives the energy and par-
ticles of the donor and the acceptor site and the central bond
in comparison to the lines ip and ib of the dimer of Fig. 5. At
the point when the donor amplitude matches the acceptor
amplitude, the energy of these two peaks and their central
bond is necessarily below the line ib of Fig. 5. This is not
true for most of the time and the line ib is crossed only for a
short period during which the migration actually takes place.
At this time, the particle number of the dimer isAd<4.5 [see
Fig. 2(a)]. This barrier at the center of the excitation is the
one that is more difficult to overcome.

B. Statistical nature of localized excitations

High-amplitude excitations like the one in Fig. 1(a) are
characteristic for the long-time dynamics of the DNLS for
positive energiessH.0d [16,20]. Virtually no oscillators
have intermediate amplitudes in the range between the low-
amplitude waves and the high-amplitude peaks if the particle
density is smallA/N!1. The peaks are clearly distinct from
the exponential tail of the low-amplitude phase. Numerical
simulations show that the surrounding low-amplitude excita-
tions have a great impact on the excitations: If their energy is
positive, the excitations grow or new excitations emerge. In
contrast, low-amplitude waves with a negative energy de-
crease the size of the excitations. On long time scales, there
are no high excitations if the total energy is negativesH,0d.
In this case, the amplitude is small at all lattice sites as the
probability for higher amplitudes decays exponentially. In a
recent paper[16] it has been shown that this formation of
localized excitations in the DNLS equation is astatistical
phenomenon that follows from the interaction of low-
amplitude waves with excitations. Those results that are im-
portant for the understanding of the pinning effect will be
outlined briefly without a formal derivation. The relevant
formulas from Ref.[16] are reviewed in the appendix.

The gap between the amplitudes of the excitations and the
wave background suggests to describe them as two distinct
physical systems. The low-amplitude waves contain a share
H,, A, of the energy and the particles, and may be described
with a linear approximation. The peaks containA. particles,
and their energyE. is dominated by the nonlinear contribu-
tion. Excitations and linear waves can exchange particles and
energy. For the statistically relevant state, the particlesA

=A,+A. and energyH=H,+H. are partitioned between
the two systems so that the total entropy is maximal. The
bulk of the entropyS turns out to be due to the low-
amplitude waves, while the contribution from the excitations
is small. The transfer of particles and energy between the two
systems is related to the corresponding potentials: the chemi-
cal potentialg and the temperatureb−1. When the waves
have a positive energyH,.0, their inverse temperatureb
(A3) is negative. The entropy of the waves decreases as
dS/dH,=b,0 for increasing energy of the waves. The for-
mation of high-amplitude peaks allows the system to in-
crease its total entropy. The energy that is released from the
low-amplitude waves is absorbed by the peaks. The process
stops whenH,=0 andb=0.

On the other hand,g (A4) is positive forH,.0, and the
entropy increases withA, asdS/dA,=−gb.0. It is there-
fore favorable to transfer particles from the localized excita-
tions into the low-amplitude waves. The entropy is maximal
if the waves absorb as many particles as possible, but no
energy. Correspondingly, the localized structures have the
highest possible ratio of energy per particle. The central-peak
solution is the thermodynamically most favorable excitation
because it contains more energy per particle than any other
excitation. In other words, the temperature of the low-
amplitude waves puts energy into the excitations, while their
chemical potential extracts particles from the excitations.
This thermodynamic force causes the locally high density of
energy in each of the excitations. The separation of a phase
of high-amplitude excitations and a phase of low-amplitude
waves is the statistically most likely state only ifH.0. For
H,0, the formation of such peaks would decrease the en-
tropy. Numerical experiments show that excitations are
melted away in this case. This shows an interesting connec-
tion between the dynamical and the thermodynamical stabil-
ity of the excitations. The central-peak solution is dynami-
cally stable, i.e., its eigenvalues are imaginary. However, it
can be destroyed by an interaction with waves with a small
but finite amplitude. The thermodynamic study shows that
this is the case if the waves have a negative energy. This is in
agreement with numerical findings as well as with analytical
computations[21] of the interaction between an excitation
and a few waves. A migration of a peak is only possible if its
ratio of energy per particle decreases intermediately. This can
happen when the peaks exchange particles with the embed-
ding low-amplitude waves randomly. Huge particle transfers
are rare since huge fluctuations of the entropy are rare.

This explains pinning and migration of peaks as statistical
processes: Depending on the gap between the lines cp and cb
as well as ip and ib, fluctuations and coherent structures have
to exchange particles and energy. The gap of particles be-
tween the site-centered excitation and the bond-centered ex-
citation increases with the height of this excitation, while it is
smaller for breathing peaks that have a lower energy(Fig. 7).
Migrations become less likely for higher peaks as this would
require an unlikely huge fluctuation in its content of par-
ticles. On the other hand, the probability of such fluctuations
increases with the amplitude of the waves in the background
[Fig. 1(c)].

Taking into account the fluctuations of the excitations, the
migration orbit connects two tangles representing localized

BENNO RUMPF PHYSICAL REVIEW E70, 016609(2004)

016609-6



excitations rather than perfect central-peak solutions. The
migration starts when the trajectory accidentally approaches
this orbit, which requires a sufficiently low energy per par-
ticle in the excitation. During the migration whenuflu and
ufl+1u both are larger than their neighbors, this orbit is well
approximated by the dimer orbit(6). As it approaches the
acceptor site, the interaction with low-amplitude waves is
again important and the trajectory leaves the dimer orbit. The
final state is again a tangle atl +1. Figure 9(a) shows the
trace of suflstdu , ufl+1stdud during the migration of Fig. 1(a).
Before the migration, most particles are gathered at the sitel
with suflstdu<2d, while the amplitude atl +1 is small and the
amplitudes at both sites fluctuate irregularly. Then, following
a short-lived increase of the amplitude atl, the particles mi-
grate tol +1. The localized excitation is trapped at this new
site until another huge fluctuation allows it to move again.

C. Trigger of migrations

Migrations can be triggered externally by setting the tra-
jectory close to the starting point of the heteroclinic connec-
tion, rather than waiting for the system to reach this point
accidentally. This is shown in Fig. 9(b) where the localized
excitation rests at the sitel whenfl+1 is suddenly set to zero.
This reduces the energy of the central bond and the system is
at the starting point of the dimer orbit(6), so that it migrates
and becomes entangled atl +1 in a way that is similar to the
migration caused by random fluctuations of Fig. 9(a).

An alternative way of triggering a migration is to change
the phase of the acceptor site. The phase difference of the
donor and the acceptor isp /2 at an early stage of the dimer
orbit (6), while the phase difference of the central peak and
its neighbors is zero for the central-peak solution cp(Fig. 7).
Changing the phase of one of the neighbors byp /2 turns this
site to an acceptor, so that the peak migrates. This, however,
reduces the energy of the excitation after the migration.

The method also works for phase differences other than
p /2, which corresponds to trajectories that are more remote
from the heteroclinic orbit. For a larger phase difference, the
peak can migrate over several lattice sites. The method is
similar to the switching[13] of optical solitons where an
external force tilts the phase by a factor,exps−iknd, which
also leads to a phase shift between the donor and the
acceptor.

A migration can be triggered by a low-amplitude solitary
wave that collides with an excitation. Figure 10 shows the

impact of such collisions for peaks with two different
heights. The lower peakufu<1.95 moves by one lattice site
after the collision. The higher peakufu<2.35 remains at the
lattice site, and the solitary wave is reflected. Due to its
height, the gap between the lines ip and ib and between cb
and cp are larger than the amount of particles provided by
the low-amplitude soliton. The amplitude of the peak in-
creases in either case, as both energy and particles are ab-
sorbed from the incoming soliton. The reflected or transmit-
ted solitons carry the surplus of these quantities, therefore
the collision changes their shape and speed.

Solitons have a higher density of energy and particles than
waves with a low amplitude, so they have a greater impact
on the excitations. They mediate the interaction of waves and
excitations by transferring particles and energy. These soli-
tons can be produced by exciting a few neighboring oscilla-
tors, and they appear spontaneously in the DNLS from a
phase instability of long waves(e.g., in the simulation of
Fig. 1).

These trigger mechanisms shift the peak by a few(in the
earlier example only one) lattice sites, where the peak is
again trapped. The reason for this is again the nonintegrable
interaction of the excitation with low-amplitude oscillations.
Unlike in the continuous nonlinear Schrödinger equation the
DNLS has no conserved momentum, and unlike the
Ablowitz-Ladik equation it has no exact soliton solutions.
The trapping of moving excitations by the lattice can be seen
in Fig. 11. Similarly to the process that led to the excitation
of Fig. 1(a), breathers emerge att<150 by a phase
instability of an initial low-amplitude wavefnst=0d
=0.3 exps−iknd with k=p /32. The breathers move toward
highern with a speed that is proportional to the phase tiltk
of the initial condition for a few hundred time steps. Att
<500 the speed of the breathers changes erratically. Att
<800 they have merged into pinned excitation that are simi-
lar to the one of Fig. 1(a). These peaks migrate occasionally,
either because they interact with solitons as in Fig. 10(a), or
because of random fluctuations. The trapping of moving
breathers and their merging into a few high peaks can be
considered as a thermalization process where the system
moves from an initial state with a low entropy to a high
entropy state that is solely determined by the two conserved
quantities. There is no conserved momentum of the breath-
ers, and their speed decays by the interaction with the lattice.
This interaction is strong for high, narrow excitations. A

FIG. 9. (a) uf126u vs uf125u for the migration of Fig. 1(a). (b) A
similar migration that is triggered by externally setting the acceptor
amplitude ufl+1u to zero at one point during the numerical
integration.

FIG. 10. (a) Collision of a peak with the heightufu=1.95 with a
soliton resulting in a migration of the peak by one lattice site.(b)
Collision of a peak with the heightufu=2.35 with a soliton leads to
no migration.
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moving excitation tends to grow if the surrounding low-
amplitude waves have a positive energy, so that the pinning
force becomes more relevant. On the other hand, it tends to
decay and continues to travel if the surrounding waves have
a negative energy.

IV. CONCLUSIONS

The mobility of localized excitations of the discrete non-
linear Schrödinger equation depends crucially on their inter-
action with low-amplitude waves. This interaction influences
the amounts of energy and particles that are gathered in the
excitation. An excitation can only move if it is possible to
transfer these two quantities to a neighboring lattice site in a
continuous process.

The energy and particle balance of migrations has been
considered in two different ways, first, only for the two sites
(donor and acceptor) that have the highest amplitude during
the migration, second, for the broader structure of the exci-
tation including adjacent sites with lower amplitudes. Figure
2 shows that energy and particles are almost conserved dur-
ing the migration process for the simple model of only two
sites. From this, a thresholdufu=2 (Fig. 5) for the maximum
height of moving excitations can be derived. The trajectory
of the migration can be computed analytically(Fig. 3) below
this threshold, while there is no such trajectory beyond this
threshold(Fig. 4).

Excitations in numerical experiments resemble the
central-peak solution of Fig. 7 more than the isolated peak of
Fig. 5. This can be explained statistically: The DNLS is a
nonintegrable dynamical system in which the excitations can
absorb or emit low-amplitude waves. Excitations and low-
amplitude waves coexist in the equilibrium state where the
entropy is maximal[16]. The entropy is maximal when the
low-amplitude waves contain as many particles as possible,
but no energy. Correspondingly, the excitations absorb the
total energy using a minimum amount of particles. The
central-peak excitations of Fig. 7 have the highest possible
ratio of energy per particle and are thermodynamically stable
if the system’s total energy is positive. The interaction with

low-amplitude waves forces the excitation into a state that is
close to this solution. This excitation is usually pinned at the
lattice since no path conserving both energy and particles
connects such an excitation with a similar excitation at
neighboring lattice sites.

Only if an external force changes the local particle num-
ber or energy temporarily can the excitation move. Interest-
ingly, one possible cause for this is again the excitation’s
interaction with low-amplitude waves. While this causes a
high ratio of energy per particle in the excitation on average,
it also leads to fluctuations on short time scales. This allows
the excitation to move if its energy decays below the energy
of a central bond solution(Fig. 7). In other words, while the
interaction with the waves is responsible for the pinning of
the excitation, it can have the opposite effect when sporadic
huge fluctuations trigger a migration. After moving over one
or a few lattice sites, the excitation is again trapped at its new
location as the interaction with the waves increases its en-
ergy again. If the waves have a negative energy, the excita-
tion will rather decrease in size and continue to move.

The pinning effect explains the numerical finding of
maximum amplitudes slightly aboveufu=2 in long-time
simulations with low-amplitude initial conditions. The en-
tropy would increase if these peaks merged into a smaller
number of higher peaks. However, this does not happen on
realistic time scales since migrations of these excitations are
rare enough that fusions of pinned peaks are excluded
(Fig. 11).

External forces can be used to trigger a migration in a
similar way. Three mechanisms for this have been discussed:
Either, the phase or the amplitude of the acceptor can be
changed, or a low-amplitude soliton can collide with the ex-
citation. The main point of these switching mechanisms is
that they decrease the ratio of energy per particle and that
they set the trajectory close to the heteroclinic connection
between the donor and the acceptor site.

APPENDIX: THERMODYNAMIC EQUILIBRIUM OF THE
DISCRETE NONLINEAR SCHRÖDINGER EQUATION

A statistical description of the equilibrium state of the
discrete nonlinear Schrödinger equation[16] is based on the
grand partition function

ysb,gd =E e−bsH−gAddG, sA1d

where the two parametersb andg reflect the conservation of
H andA. An analytic approximation of this can be computed
in the case of a low particle density. For any solution with a
low particle densitykufnu2l=A/N!1, the amplitude has to
be smallufnu,OÎA/N at almost all lattice sites. High am-
plitudes ufnu@ÎA/N will occur at very few sites. For in-
stance, the number of sites with amplitudesufu,Os1d is at
most proportional toA!N. At the sites where the amplitude
is small, the quartic energy contributionufnu4/2 will be neg-
ligible compared to quadratic contributionfnfn+1

* +fn
*fn+1.

On the other hand, the quartic contribution will prevail at
high-amplitude sites.

FIG. 11. Integration of the DNLS(1) with 1024 oscillators.
Moving breathers emerge from a low-amplitude wavefnst=0d
=0.3e−ipn/32. The breathers merge into peaks with higher amplitudes
that are pinned at the lattice.
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This suggests to simplify the Hamiltonian by neglecting
the quartic energy contribution for low-amplitude excita-
tions, and by neglecting the coupling energy for the high
peaks. Introducing the borderr @ÎA/N between “high” and
“low” amplitudes, the Hamiltonian can be approximated by
the sumH<H,+H. of a low-amplitude contribution

H, = o
ufnu,ufn+1u,r

fnfn+1
* + fn

*fn+1

and a high-amplitude contribution

H. = o
ufnu.r

ufnu4/2.

Similarly, the particle number is divided in two compo-
nents asA=A,+A..

Using this separation of the energy and the particle num-
ber, the integration of Eq.(A1) can be carried out in the
high- and low-amplitude domain separately. The low-
amplitude phase and the peaks are two thermodynamic sys-
tems that are coupled by their common temperatureb−1 and
the chemical potentialg since particles and energy can be

exchanged between the peaks and the waves. The canonic
transformationSsH ,Ad=ln y+bsH−gAd yields the leading
term of the entropy

S< N ln V sA2d

with V=s4A,
2 −H,

2 d / s4A,Nd. This predominant contribution
to the entropy is due to the low-amplitude waves. The peaks’
contribution to the entropy turns out to be negligible, but
they can absorb high amounts of energy. The inverse tem-
perature is

b = −
2H,N

4A,
2 − H,

2 sA3d

and the chemical potential is

g =
4A,

2 + H,
2

2H,A,

. sA4d

The entropy is maximal forH,<0, H.<H, A,<A, A.

<0. This corresponds to a single high peak that absorbs all
the energy, while the low-amplitude waves have a white
power spectrum and absorb all particles.
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