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Intermittent movement of localized excitations of a nonlinear lattice
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The mobility of localized high-amplitude excitations of the discrete nonlinear Schrédinger equation is
studied. The excitations can either be pinned at the lattice or they can propagate depending on their energy and
particle number. Such localized excitation can emit or absorb waves with a low amplitude which changes the
amount of these quantities in the excitation. For statistical reasons, the excitations absorb a high amount of
energy per particle through their interaction with low-amplitude waves. They can only move if their energy
decreases temporarily either by a random fluctuation or by an external force.
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I. INTRODUCTION shows the rare event of localized excitation that migrates

High-amplitude localized excitations that emerge Spontafrom one lattice site to a neighboring lattice site. At first a

{ : pg ate
neously from a background of low-amplitude waves are g19h @mount of particlesup to ¢4~ 4.5) is gathered at

dynamical property of many spatiotemporal systems. Exihe site 125, but at~1066 these particles move to the

amples for this are the self-focusing of light in Kerr- neighbqring Iat'tice si.te 126 within 3t_ime units. . .
nonlinear media[1], collapses in plasmag?], and Bose- The interaction with the low-amplitude waves is crucial

Einstein condensatd8], and possibly also the formation of for the migrati(_)n of the peak. Th_is interaction is §tudied in a
extraordinarily high waves in the ocea#]. Self-focusing secpnd nume_rlcal expenmc_an_t_wnh Hq.) .for a chal_n of 5.12
behavior is a characteristic of the nonlinear Schrbdingeftt'Ce sﬂgs[ﬁg. .1(C)]' The. initial condition is a §|ngle ISo-
equation and its various modifications that govern these sy g_ted excitation in an environment of Iow—gmphtude waves
tems. Spatially discrete systems in solid state phyf&t®r with a Wh.'te noise spectrum'. This system_ls integrated over
molecular dynamic$6] and arrays of coupled optical fibers 10:000 time units for various peak-heights and wave-

[7.8] can be described by ordinary differential equations Sud@mplitudes and it is observed whether the excitation migrates

as the discrete nonlinear Schrédinger equatl@NLS): or not. Fig. 1c) S.hOWS the time-average amplituhﬁpeakof.
the highest localized structure that has been found to migrate
0 by

_ 2 at least once during the 10 000 time units of the integration
T Pr1 + boa + |l (1) as a function of the surrounding low-amplitude waves. The
) _ ) ) lattice pinning turns out to be stronger if the amplitude of the
for complex amplitudes), at sitesn. Equation(l) derives as  excitation is higher. The probability for a migration of a peak
i¢pn=dH/d¢, from the Hamiltonian (or “energy’) H

=3 0(hudprt Bebnen) + 1/ 24757 which is a conserved o

quantity. The modulus-square norgar “particle numbery
A=3, ¢n¢; is a second conserved quantity of this equation.
An interesting phenomenon in this spatially discrete system
is the trapping of intensity peaks: High-amplitude localized
solutions[9] interact most strongly with the discrete struc-
ture of the supporting medium, so that they are pinned to the
lattice for most of the time and rarely migrate to a neighbor-
ing lattice site. This is shown in a simulatigRigs. Xa) and

1(b)] where the DNLS withN=1024 lattice sites and peri- n

odic boundary conditions has been integrated with spatially 128 . PR
homogeneous low-amplitude initial conditiogg(t=0)=0.3. 126 /’/ﬁ

This homogeneous state is phase unstable, and within a few ,,, ] moligpedis
hundred time units a few high-amplitude excitations emerge  ,,

from a disordered low-amplitude phonon background. The s Y

typical amplitude of an excitation ikp|~2 at one central 1058
S'te’_ and W'th|¢|zo'5 at its two neighbors. The amphtude_s_ FIG. 1. (a) Particle density¢,(t)|? at 11 lattice sites within a
at sites remote from these peaks are mostly below their inigpain of 1024 lattice sites. A migration occurs during this interval of
tial .values_|¢| <0.3, with an exponentially decaying prob- 15 time units after a long integration timg) The same interval in
ability of higher amplitudes. Figure(@ shows the profile of  space and time as). Dark gray means a high particle dendigy)2.

the squared amplitudgp,(t)|* as a function of time(from  (c) The maximum heighle,| of peaks that are found to migrate as
1058 to 1073 time units after the beginning of the integra-a function of the particle densitg/N of the surrounding low-
tion) in a small segmengll lattice sites of the chain. It  amplitude waves.
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decreases rapidly with its height, and the threshold for the @ (b) .
pinning of peaks is aboyith| = 2, increasing slightly with the A 200 10,561 + 2Re(d, 0,
level of the surrounding low-amplitude waves. Peaks that are ol 0l o

higher than the one of Figs(d) and Ib) migrate very rarely. s

Smaller excitations are pinned only if the surrounding waves 2 . .1

have a very low amplitude. J e 14,

172, 261‘

1065

The reason for this pinning effeft0-12 and its possible
applications in optical signal switchiffd@ 3] have been inves-

V24, 25|‘
1067 t

(d)

tigated in many papers. Unlike continuous systems whose A i, b, 17 H
solitary solutions have a Goldstone mode, solutions of dis- * " oL 1720 1% W, 1°) + 2Re(@,97,))
crete systems change in shape when they propagate in space. s .
The dynamics of solitary long-wave solutions is well ap- . 2Re@, 4
proximated by a continuum description, but high-amplitude | i, 12
excitations with a width of the order of the lattice constant 0 24 1P
. . . . . +1 (]
are subjected to a strong spatially periodic force that impedes ° > v

their movement. In a generic case where the lattice dynamics
are nonintegrable, no general computation scheme for mov- FIG. 2. Particle numbef,,4° and | ¢4 (a,0 and nonlinear
ing solutions is available. Numerically, one finds narrow soli-energies|¢;,4%/2, |¢1.d*/2 and coupling energy 2 Ré 25706
tary waves that propagate over short distances in the latticé, d) during the migration. The numerical da@,(b) describe the
while they radiate low-amplitude waves. Finally, they aremigration of Figs. {a) and Xb) as a function of time fof1064.4
either trapped or even disappear completely. This shows t<1067.5. The analytical datéc),(d) are functions of the param-
again the importance of the interaction between stronghgterv [see Eq(4)].
nonlinear excitations and phonon-like waves. Stable local-
ized solutions of the DNLS are statically pinned to the lat-excitations with no surrounding low-amplitude waves are al-
tice. One approach to capture this feature uses the concept whys pinned and they cannot migrate spontaneously. Migra-
the Peierls-Nabarro barrier that originally describes how theions can be triggered, however, in the presence of surround-
periodic lattice potential of crystals prevents the migration ofing of low-amplitude waves. A migration to a neighboring
defects unless some external force exceeds a threshold valuattice site requires an intermediate fluctuation of the energy
This approact10] asserts that the migration occurs via anof the excitation that is statistically unfavorable.
intermediate state with a different energy content, which re- Most figures 1a), 1(b), 2(a), 2(b), 3(b), 6, 8, and 9 derive
quires a temporary change of the energy of the excitationfrom one numerical simulation of a migration in Ed.). It
This effective pinning energy is not, however, a fixed barrierhas been confirmed by other similar simulations that this
caused by the lattice because it depends also on the ampfirocess of migration is representative.
tude of the excitation itseffl1]. It has been pointed o(i14]
that this approach assumes the conservation of the action
during the migration. Alternative paths with temporarily Il. LEVEL SETS AND THE PATH OF THE MIGRATION
changing amplitudes could migrate without any change of
energy. Hence, the amount of particles are crucial both for
the pinning and migration of localized excitations. Figure 1 indicates that during the migration there is a high
This paper explains the pinning and the possibility of mi-particle density only at the two lattice sites 125, the initial
grations of localized excitations interacting with low- location of the peak, and at=126, its location after it has
amplitude waves as a statistical process. It makes use of ttigoved. Fig. 2a) shows the evolution of the particle numbers
recent progress of the understanding of localized solutions &t these two lattice sites during the migration. The particle
statistical phenomenfd5,16. Localized excitations are con- number at the site 125 decreases fighp4?~4.6 to a value
sidered in connection with surrounding low-amplitude close to zero. Simultaneously, the particle number at the
waves. These waves may be described in a linear approxieighboring site 126 increases from around zerddtpg?
mation, so they are sometimes referred to as phonons. De=4.5. The total number of particles at the two sites is almost
pending on the temperature of these waves, the excitatiorgonstant|¢;.4%+|¢1,4°~4.6+£0.1, and there is little ex-
can grow or they can be melted away. This approach deriveghange of particles between these two lattice sites and their
the amounts of energy and particles in the localized excitaneighbors where the amplitudes remain small during the mi-
tions from the thermodynamic potentials of surrounding low-gration. The migration is basically a transfer of particles
amplitude waves. This explains the high density of bothfrom the “donor” lattice site 125 to the neighboring “accep-
quantities within the excitation. tor” site 126. Corresponding to the growth and decay of the
First, this paper shows that the trajectory of migrationsadjacent peaks, the nonlinear enefgi,d*/2 grows and
can be described by an idealized dimer model that reducdg.4*/2 decayqFig. 2b)]. Unlike the particle number, the
the lattice to two sites. This migratory orbit exists only for sum of these two nonlinear energy contributions is not con-
peaks below a certain critical energy. Above this thresholdserved and it decreases temporarily during the migration.
the energy conservation prevents any migration of peaks. The energy that is released from the nonlinearity is §tored in
Second, excitations of the full lattice and their interactionthe central bond so that the coupling energy @Res, 59
with low-amplitude waves are considered. Perfect localizedyrows temporarily{Fig. 2b)]. The sum|¢,,d*/2+|pq,d* 12

A. Conservation laws during the migration
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+2 Re(151,¢ Of the nonlinear energies at the two sites cos (@ ]
and the coupling energy in the central bond is roughly con- 1 intersection =
served.

This approximate local conservation of energy and par-
ticles at two sites suggests to model the migration process by o
a perfectly isolated dimer of only two oscillatogs and ¢, 1,

with a constant particle number —— 22
— L0
Ag= > + |l 2 -1 - ! 0|
1
and a constant energy that includes the nonlinear contribu- 19,1 1
tion from the two sites and the energy from the central bond 2

1 1
Hy= §|¢||4 + §|¢|+1|4+ 2 R ¢hy.y)

1 1
= ||+ S|l * + 2| ¢l pradlcOS 2, (3
2 2

where a is the phase difference between and ¢,;. This
model neglects smaller fluctuations of the dimer’s energy
and particle content due to interactions with the surrounding
low-amplitude oscillators.

B. Intersection of level sets

Writing the donor asp=|¢|€¥**? and the acceptor as

i . . FIG. 3. (a) Level sets ofAy andH for a peak heights|=2.0 as
Pre1=| Pra|€V""?, the four-dimensional phase space of theg, @ P d P ghid|

ctions of|¢y|, |pns1], cOSa. (b) Intersection of the level sets for

dimer can be represented by the three coordinaigs ¢, |¢|=2.0 (line) and the trajectory of the peak migration from the
cos a, plus the trivial phase variablg. The two conservation  simylation of Fig. 1(points. The time interval i1064.5, 1067.F
laws define level sets in the phase space. the interval between subsequent points is 0.1 time units. The dotted

Any solution conserving Eqg2) and(3) is restricted t0  jines and the crosses are the projections to the leve|ggtsd and
the intersection manifold of the two level sets which deter-cosa=0.

mines the path of the migration. Parameterized by

e[0,1], this onedimensional manifold is given by path closely matches the numerical trajectory.

Hi(v) =ry1 - velrei2
(4) C. Threshold of the migration

— [ i(yral2)

_qﬁlﬂ(v) —rhwe ' Figure 4a) shows the intersection path that connects a
with cosa=r2yv—1?/2. It connects the staté#(v=0)|=r,  donor|¢(»=0)|=1.5 with an acceptdip.,(v=1)|=1.5. Fig-
|+1(v=0)|=0) before the migration, when all particles are ure 4b) shows that there is no such closed connection for
gathered at the sité¢, and the state after the migration |¢|=2.5. The closed connectiad) exists only if the condi-
[|&(v=1)|=0, |¢s2(v=1)|=r], when all particles are gath- tion cosa<1 is fulfilled for all » [0, 1]. With its maximum
ered atl+1. Corresponding to the solutiq@), the particle coga(v=1/2)]=r?/4 at the migration’s midpointv=1/2,
number of the initial peaks|?=r?(1-v) decays linearly as a this inequality is only fulfilled ifr?< 4, which corresponds to
function of v, while it grows as/¢y,1/2=r?v at the neighbor an initial donor peak amplitudes(»=0)|<2.
site [Fig. Zc)]. Similarly, the nonlinear energies decay and Peaks with|¢| >2 cannot migrate, since tHe|*energy
grow asr*(1-»)?/2 andr*1?/2, respectively, while the bond of the initial peak cannot be stored in the coupling term
between the two sites stores the enertfy—1?) temporarily 2 Rg¢é,,;) at the midpoint of the migration. It follows
[Fig. 2d)]. These particle and energy densities as functionsrom the particle conservation that the amplitudes of the two
of the parameter closely agree to the numerical ddféig.  oscillators are |¢(v=1/2)|=|¢1(v=1/2)|=r/y2 at this
2(a) and 2b)]. point. Such a state of two neighboring peaks with a bond

Figure 3a) shows the level sets @{;=4 andHy=8. Their  (“isolated bond” or “ib” in Fig. 5 can maximally absorb the
intersection set includes the initial Stat¢¢|(1/:0)| enerngd:r4/4+r2 for =0, or a smaller amount of energy
=2,|¢41(v=0)|=0. for a nonzero angler. A single isolated peaKip” in Fig. 5

Fig. 3b) shows the intersection lin@) of the level sets has an energy,=r*/2. Figure 5 shows that the maximum
and the trajectory of the migration of the simulation of Fig. energy of the central-bond state is larger than the energy of
1. The numerical data are given as points with distances dhe isolated peak foAy<<4 or r <2. In this range a central
0.1 time units. It also shows the projections of the data to théond state with a suitable can absorb the energy of the
three planes coa=0, |$1,4=0, |$1,d=0. The intersection initial isolated peaks. In contrast, the energy of the isolated
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a (b)
C1OSOC @
0
E //0 0 1066 1067 ¢ o 1065 1067 t
15 - |¢1 | FIG. 6. (_a) cosa and (_b) |<b||.and |#141] as function_s of time
1, 3 1 during the simulation of Fig. {points and for the analytic solution
of the two-site model witlr=1.96 (lines) as functions of time.
(b)
CPSOC -——— gap D. Dynamics of the migration

The intersection line between the two shdl}s-const and
Hgy=const is an exact solution of a migration of a peak from
0 the sitel to 1+1 in the dimer modef12,17. Its dynamics is
governed by

0

: r d i = P+ |2,
16 . 19, | (5)

I¢I+1 ! > 2 i¢l+1: d+ |¢|+1|2¢|+1-

FIG. 4. Level sets oA, andH, for peak heightsa) |¢|=1.5 and These equations are obviously integrable so that they can be

(b) |¢|=2.5. For the higher initial peatb), there is no closed con- solved analytically[.12,lﬂ. Equivglentlly they can be trans-
nection betweend,|=2.5,|¢n.1/=0 and|d,|=0,|¢m.1|=2.5 on the ~formed to an equation for a particle in an effective potential

intersection set. [18]. The solution reproduces the intersection pathAgf
=const andHy=const as a function of time. The solution of
Eq.(5) is
peak withAy>4 is higher than the energy of any intermedi-
ate central-bond state, and the local conservation k&ys || = r\[1+cn2t,r?/4)]/2,
and(3) are incompatible with a migration.
The limit for larger corresponds to the original argument | el = 1V[1 - cn2t,r2/4) /2,

[10] for the Peierls-Nabarro barrier in the DNLS: For an
initial donor amplitude¢|=r, the amplitudes of donor and

2
acceptor will match asey|=|¢.1|=r/\2 at the time when CcoS = r—sr~(2t,r2/4),

half of the particles are transferred. For largéhe quadratic 4

coupling energy can be neglected in comparison to the quar- (6)
tic nonlinear energy. The energy,~r4/4 of this state is sin a=-dn(2t,r%/4),

below the initial energyHy=r*/2, and the difference be- ) . 5 o

tween these two energies may be regarded as a Peierlfé’h”e ¢h_as the constant spe&d:l—3r /4. This is exactly the
Nabarro barrier that pins the peak at one site. intersection patti4) wherev(t)=3[1-cn(2t,r?/4)] has been
determined. Figure 6 shows that| decays monotonically
from r to O while |4 grows. cosa increases from 0 to its
maximumr?/4 and decays to 0 subsequently, which is only

Hat 29,1 2,1 possible if the initial amplitude is<2. « grows from -w/2
. , to a value that is less or equal 0 and decays againmt2-
°r H m The solution of Eq(6) is very closgFig. 6 wherer =1.96) to
I - o K the numerical data from the simulation of Figajl
isolated peak (ip) isolated bond (ib)

Ill. FLUCTUATIONS AND MIGRATIONS OF THE
EXCITATION

The two-site model neglects all energy and particle con-
tributions except for the donor and the acceptor site, which
2 T AL leads to a qualitative shortcoming of this idealized descrip-

tion of peak migration in the DNLS equation: The or®)

FIG. 5. Energy vs particle number of an ip and of two isolatedthat connects the two excitations of the dimerascept for
peaks with a central bon@). The dimer energy of both excitations r=2) periodicin time, while sufficiently high excitations of
match when the particle number of the dimeRjg=4. the full DNLS chain are pinned at one lattice site, before
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(@) (b)

H
) 19,1 2[i9,1 L~ H, .
1 1 cb localized breather
| 1K
1]

n n
central peak (cp) central bond (cb)

i)

localized breather CP

cb

migration migration
\/ 4 4 0 s Ad 4 s A
———— treathers ] FIG. 8. Trace of the energy vs the particle number of the exci-

tation of Fig. 1a) over 60 time unitg600 integration steps of 0.1
time units eachfrom t=1035 tot=1095. The migration occurs at
° n % n 4 A t=1066.(a) shows the energy and particles of only the two central
lattice sites 125 and 126b) shows these quantities measured in a
FIG. 7. Energy vs particles for the stationary central-peay ~ Proader patch of 13 lattice sites. The lines ip, ib, cp, and cb are the
solution and the central-bor(db) solution(lines) and for breathers ~Sa@me as in Figs. 5 and 7.
with various heightgpoints.

tation that migrates along this path. This energy gap is obvi-

suddenly its particles are shifted to a neighboring lattice sit@usly different for alternative paths that connect two central-
where the excitation is again pinned for a long time. RealP€ak solutions. The smallest possible energy gap that can be
excitations are not isolated peaks at one single lattice sitdound for any such path is often referred to as the Peierls-
they have nonzero amplitudes at neighboring lattice sitedNabarro barrier.

They can absorb or emit low-amplitude waves. An investi- It is assumed10] that this energy barrier is given by the
gation of the interactions between the peak and its lowenergy difference between the central-peak solutibat de-
amplitude environment can explain why the peak is locked afines the starting point and the end point of the padind the

one lattice site for most of the time and why it can suddenlysolution cb in Fig. 7, which is a symmetric midpoint of the
move to a neighboring site. migration path. This unstable solution of E{) is a saddle

point of the energy under the constraint of fixed particle
numberA. It has a lower energgline cb in Fig. 3 than the

A. Stationary excitations and breathers site-centered solutiofline cp in Fig. 7 with the same particle
Excitations that are stationary in a frame rotating with thecontent, and this gap between the lines cp and cb widens
frequencyw are solutions of with increasing values of. It seems plausible that a path
with the smallest possible change of energy will contain the
0= dhner + 1+ bl > + 0. (7)  central-bond solution as the intermediate state where this in-

evitable deviation from the initial energy is reached. Any
alternative path whose energy minimum is not a saddle point
could be varied in a way that reduces the energy barrier.
However, the author is not aware of a formal proof for this.
This gap is smaller if the initial solution is not a stationary
central-peak solution, but a solution with a similar shape and
0= 5¢*(H + wA) a “breathing” amplitude. Such a breather corresponds to a
. periodic orbit close to the elliptic fixed point of the central-
for extrema or saddle points of the energy where thepeak solution. Such breather solutions have an energy
Lagrange parametes constrains the particle numbér slightly below the line cp. Figure 7 shows the energies and
One well-known[19] localized real solution of Eq(7) is  particle numbers of breathers that emerge from an initial
site centered, i.e., the amplitudes decay symmetrically at theondition with a peak at one lattice site and a zero amplitude
left and the right of the site with the maximum amplitude everywhere else. The total energy of this central site and the
(solution cp in Fig. 7. This central-peak solution is stable, as six neighbors at its left and its right are plotted for 100 inte-
it has a maximum of energy for a given particle number.gration steps of 0.25 time units each. It turns out that breath-
Central-peak solutions at different lattice sites correspond ters with particle numbers up tA=4 have a lower energy
different elliptic fixed points in phase space. There is no pathhan a central-bond solution with the same particle number,
that connects these islands while conserving both the energynd so are more likely to migrate.
and the particle number, and a perfect central-peak solution The force that causes the migration of Fig. 1 is the inter-
will not move at all. action of the localized structure with low-amplitude oscilla-
However, some external force applied to an excitationtions at neighboring sites. This interaction changes not only
may change its energy and move it to a neighboring latticehe energy of the moving structure, but also its particle con-
site. In phase space, the trajectory of such a migration correent. Figure 8 compares the amounts of energy and particles
sponds to a path on which the particle number is conservedrregular line in the localized excitation from Fig.(&) with
while the energy varies. The external force has to bridge théhe energy and particles of stationary central-peak and
gap between the highest and the lowest energy of the exceentral-bond excitations. In Fig(l8, the amount of energy

Reading this set of equations as a mdp,_1,®,)

— (¢, Pne1), localized excitations correspond to homoclinic
orbits that connect the fixed poinb_.=¢,,,=0 to itself.
Equation(7) is equivalent to the condition
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and particles is measured in a patch of 13 lattice sites witlFA_+A. and energyH=H_+H. are partitioned between
the peak at the center in a period of 60 time units duringthe two systems so that the total entropy is maximal. The
which the migration occurs. The energy content changebulk of the entropyS turns out to be due to the low-
relatively little compared to the particle number, which is amplitude waves, while the contribution from the excitations
due to the low energy of the low-amplitude waves. Theis small. The transfer of particles and energy between the two
energy-particle trace of the excitation is in the region of theSystems is related to the correspondl_nlg potentials: the chemi-
central-bond solutiordline cb), well below the line cp. The cal potentialy and the temperaturg™. When the waves
trace has to be below the line cb at least at some point of thBave a positive energii_ >0, their inverse temperaturg
migration, which is actually the case for much of the time.(A3) IS negative. The entropy of the waves decreases as
The actual migration corresponds to the largest temporarf)S 4H<=B<0 for increasing energy of the waves. The for-

increase of the particle number, which reaclhes5.5 for a ation .Of high-amplitude peaks allows _the system to in-
short period of time ' ' crease its total entropy. The energy that is released from the

This balance concerns the total energy and particle numg\é\gzqmgﬂe lN g \;ensdg_aobsorbed by the peaks. The process
o= =0.

ber _of the excitation. In .additic.)n to this condition, enpugh On the other handy (A4) is positive forH_ >0, and the
particles need to be available in the center of the excnatlorémropy increases with. asdS'dA_=-y8>0. It is there-
during the migration. Figure(&) gives the energy and par- fqre favorable to transfer particles from the localized excita-
ticles of the donor and the acceptor site and the central bonghns into the low-amplitude waves. The entropy is maximal
in comparison to the lines ip and .ib of the dimer of Fig. 5. Atif the waves absorb as many particles as possible, but no
the point when the donor amplitude matches the acceptinergy. Correspondingly, the localized structures have the
amplitude, the energy of these two peaks and their centrajighest possible ratio of energy per particle. The central-peak
bond is necessarily below the line ib of Fig. 5. This is notgg|ytion is the thermodynamically most favorable excitation
true for most of the time and the line ib is crossed only for apecause it contains more energy per particle than any other
short period during which the migration actually takes placeeycitation. In other words, the temperature of the low-
At this time, the particle number of the dimerAg~4.5[see  amplitude waves puts energy into the excitations, while their
Fig. 2@)]. This barrier at the center of the excitation is the chemical potential extracts particles from the excitations.
one that is more difficult to overcome. This thermodynamic force causes the locally high density of
energy in each of the excitations. The separation of a phase
of high-amplitude excitations and a phase of low-amplitude
waves is the statistically most likely state onlyHf>0. For
High-amplitude excitations like the one in Figal are  H<O0, the formation of such peaks would decrease the en-
characteristic for the long-time dynamics of the DNLS for tropy. Numerical experiments show that excitations are
positive energiesH>0) [16,20. Virtually no oscillators melted away in this case. This shows an interesting connec-
have intermediate amplitudes in the range between the lowtion between the dynamical and the thermodynamical stabil-
amplitude waves and the high-amplitude peaks if the particléty of the excitations. The central-peak solution is dynami-
density is smalA/N<1. The peaks are clearly distinct from cally stable, i.e., its eigenvalues are imaginary. However, it
the exponential tail of the low-amplitude phase. Numericalcan be destroyed by an interaction with waves with a small
simulations show that the surrounding low-amplitude excitatut finite amplitude. The thermodynamic study shows that
tions have a great impact on the excitations: If their energy ishis is the case if the waves have a negative energy. This is in
positive, the excitations grow or new excitations emerge. Iragreement with numerical findings as well as with analytical
contrast, low-amplitude waves with a negative energy decomputations[21] of the interaction between an excitation
crease the size of the excitations. On long time scales, thewnd a few waves. A migration of a peak is only possible if its
are no high excitations if the total energy is negatiMe<0).  ratio of energy per particle decreases intermediately. This can
In this case, the amplitude is small at all lattice sites as théappen when the peaks exchange particles with the embed-
probability for higher amplitudes decays exponentially. In ading low-amplitude waves randomly. Huge particle transfers
recent papef16] it has been shown that this formation of are rare since huge fluctuations of the entropy are rare.
localized excitations in the DNLS equation isstatistical This explains pinning and migration of peaks as statistical
phenomenon that follows from the interaction of low- processes: Depending on the gap between the lines cp and cb
amplitude waves with excitations. Those results that are imas well as ip and ib, fluctuations and coherent structures have
portant for the understanding of the pinning effect will beto exchange particles and energy. The gap of particles be-
outlined briefly without a formal derivation. The relevant tween the site-centered excitation and the bond-centered ex-
formulas from Ref[16] are reviewed in the appendix. citation increases with the height of this excitation, while it is
The gap between the amplitudes of the excitations and themaller for breathing peaks that have a lower enékgy. 7).
wave background suggests to describe them as two distindligrations become less likely for higher peaks as this would
physical systems. The low-amplitude waves contain a shamequire an unlikely huge fluctuation in its content of par-
H_, A_ of the energy and the particles, and may be describeticles. On the other hand, the probability of such fluctuations
with a linear approximation. The peaks cont&in particles, increases with the amplitude of the waves in the background
and their energ¥-. is dominated by the nonlinear contribu- [Fig. 1(c)].
tion. Excitations and linear waves can exchange particles and Taking into account the fluctuations of the excitations, the
energy. For the statistically relevant state, the partidles migration orbit connects two tangles representing localized

B. Statistical nature of localized excitations

016609-6



INTERMITTENT MOVEMENT OF LOCALIZED... PHYSICAL REVIEW E 70, 016609(2004)

@ (b) (@) (b)

I 25 25

9,1 o, retcd]

N migration | of ! n n seen
\ migration soliton
" b i
/ i W -uh,i“"m
1 1 m“‘"‘h‘
trigger iy,

localized breathers — / 'Imigation T

. _ peak peak
1 2 1 2
19,1 o, 1 15 ) o % -

FIG. 9. (a) | 124 Vs |p124 for the migration of Fig. (a). (b) A

il ioration that is tri 4 by ext llv setting th ; FIG. 10. (a) Collision of a peak with the heightp| =1.95 with a
simifar migration that Is triggered by externally setling the acceptofy resulting in a migration of the peak by one lattice Sitg.
amplitude |¢,4] to zero at one point during the numerical

; ) Collision of a peak with the height|=2.35 with a soliton leads to
integration. no migration.

excitat_ions rather than perfgct central-peak solutions. Thﬁnpact of such collisions for peaks with two different
m!grathn starts wheq the trajeqtqry accidentally approaCheﬁeights. The lower pealp| = 1.95 moves by one lattice site
this orbit, which requires a sufficiently low energy per par-agor the collision. The higher peai| =~ 2.35 remains at the
ticle in the excitation. During the migration whew| and | uice site, and the solitary wave is reflected. Due to its

|A1sal b.Oth a:;a kl)argﬁr tg.an their r%eigzbo_rs, this Or?]it is r‘:\’e”height, the gap between the lines ip and ib and between cb
approximated by the dimer orb(B). As it approaches the 5, cp are larger than the amount of particles provided by

aCC?pF"f site, the interacti.on with Iow—amphtgde Waves ISyq low-amplitude soliton. The amplitude of the peak in-
again important and the trajectory Iea}ves the dimer orbit. Th reases in either case, as both energy and particles are ab-
final st?te IS again a tagg'? a"ﬁ' F|gure.Qa) s;hoyvs the sorbed from the incoming soliton. The reflected or transmit-
trace o (|¢'(t?|’|¢[+l(t)|) uring t e migration of Fig. (B). . ted solitons carry the surplus of these quantities, therefore
Before the migration, most particles are gathered at thé siteo ollision changes their shape and speed.

with (|¢,(t)| ~2), whﬂg the amphtude at+1 is small and th? Solitons have a higher density of energy and particles than
amphtud.es at_ both sites fluctuate |_rregularly. Then, folloyvlngwaves with a low amplitude, so they have a greater impact
a short-lived increase of the amplitudel athe particles mi- 4, the excitations. They mediate the interaction of waves and
grate tol +1. The localized excitation is trapped at this new gycitations by transferring particles and energy. These soli-
site until another huge fluctuation allows it to move again. {ons can be produced by exciting a few neighboring oscilla-
tors, and they appear spontaneously in the DNLS from a
phase instability of long wavege.g., in the simulation of
Migrations can be triggered externally by setting the tra-Fig. 1).
jectory close to the starting point of the heteroclinic connec- These trigger mechanisms shift the peak by a (ewthe
tion, rather than waiting for the system to reach this pointearlier example only onelattice sites, where the peak is
accidentally. This is shown in Fig.(§) where the localized again trapped. The reason for this is again the nonintegrable
excitation rests at the sitevhen ¢y, is suddenly set to zero. interaction of the excitation with low-amplitude oscillations.
This reduces the energy of the central bond and the system ignlike in the continuous nonlinear Schrodinger equation the
at the starting point of the dimer orlgi6), so that it migrates DNLS has no conserved momentum, and unlike the
and becomes entangledlatl in a way that is similar to the Ablowitz-Ladik equation it has no exact soliton solutions.
migration caused by random fluctuations of Figa)9 The trapping of moving excitations by the lattice can be seen
An alternative way of triggering a migration is to change in Fig. 11. Similarly to the process that led to the excitation
the phase of the acceptor site. The phase difference of thef Fig. 1(a), breathers emerge at=150 by a phase
donor and the acceptor i#s/2 at an early stage of the dimer instability of an initial low-amplitude wave ¢,(t=0)
orbit (6), while the phase difference of the central peak and=0.3 exg—ikn) with k=7/32. The breathers move toward
its neighbors is zero for the central-peak solutior(Eig. 7). highern with a speed that is proportional to the phasekilt
Changing the phase of one of the neighborsg turns this  of the initial condition for a few hundred time steps. At
site to an acceptor, so that the peak migrates. This, howeves 500 the speed of the breathers changes erraticallyt At
reduces the energy of the excitation after the migration. =800 they have merged into pinned excitation that are simi-
The method also works for phase differences other thaifar to the one of Fig. (). These peaks migrate occasionally,
/2, which corresponds to trajectories that are more remoteither because they interact with solitons as in Figaj®r
from the heteroclinic orbit. For a larger phase difference, thebecause of random fluctuations. The trapping of moving
peak can migrate over several lattice sites. The method isreathers and their merging into a few high peaks can be
similar to the switching[13] of optical solitons where an considered as a thermalization process where the system
external force tilts the phase by a facteexp(—ikn), which  moves from an initial state with a low entropy to a high
also leads to a phase shift between the donor and thentropy state that is solely determined by the two conserved
acceptor. quantities. There is no conserved momentum of the breath-
A migration can be triggered by a low-amplitude solitary ers, and their speed decays by the interaction with the lattice.
wave that collides with an excitation. Figure 10 shows theThis interaction is strong for high, narrow excitations. A

C. Trigger of migrations
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100 low-amplitude waves forces the excitation into a state that is

I h AN ‘ ‘ close to this solution. This excitation is usually pinned at the
nl iy %WWW lattice since no path conserving both energy and particles
AV Rl connects such an excitation with a similar excitation at
neighboring lattice sites.
Only if an external force changes the local particle num-
Hy ber or energy temporarily can the excitation move. Interest-
e ingly, one possible cause for this is again the excitation’s
\ interaction with low-amplitude waves. While this causes a
» J L R — high ratio of energy per particle in the excitation on average,
f 1) W it also leads to fluctuations on short time scales. This allows
f . the excitation to move if its energy decays below the energy
0 t 1500 of a central bond solutiotFig. 7). In other words, while the
, ) _ interaction with the waves is responsible for the pinning of
FIG. 11. Integration of the DNLS1) with 1024 oscillators. e excitation, it can have the opposite effect when sporadic
5/Iovm_9m5>3r2eathers emerge from a Iow-amplltude_ Wa‘y’ﬁ(tzo_) huge fluctuations trigger a migration. After moving over one
t_h(;tazre pirirIeh deal?trzteﬁeth;;cnewerge nto peaks with higher amplitudes, . few lattice sites, the excitation is again trapped at its new
: location as the interaction with the waves increases its en-
ergy again. If the waves have a negative energy, the excita-
moving excitation tends to grow if the surrounding low- tion will rather decrease in size and continue to move.
amplitude waves have a positive energy, so that the pinning The pinning effect explains the numerical finding of
force becomes more relevant. On the other hand, it tends tgaximum amplitudes slightly abovip|=2 in long-time
decay and continues to travel if the surrounding waves havgimylations with low-amplitude initial conditions. The en-
a negative energy. tropy would increase if these peaks merged into a smaller
number of higher peaks. However, this does not happen on
realistic time scales since migrations of these excitations are
rare enough that fusions of pinned peaks are excluded

The mobility of localized excitations of the discrete non- (FIg- 11). ) o
linear Schrodinger equation depends crucially on their inter- External forces can be used to trigger a migration in a
action with low-amplitude waves. This interaction influencesSimilar way. Three mechanisms for this have been discussed:
the amounts of energy and particles that are gathered in tHglther, the phase or the amplitude of the acceptor can be
excitation. An excitation can only move if it is possible to changed, or a low-amplitude soliton can collide with the ex-
transfer these two quantities to a neighboring lattice site in &itation. The main point of these switching mechanisms is
continuous process. that they decrea}se the ratio of energy per pamcle and Fhat

The energy and particle balance of migrations has beelhey set the trajectory close to the hgterochmc connection
considered in two different ways, first, only for the two sites Petween the donor and the acceptor site.

(donor and acceptpthat have the highest amplitude during

the migration, second, for the broader structure of the exci-

tation including adjacent sites with lower amplitudes. Figure APPENDIX: THERMODYNAMIC EQUILIBRIUM OF THE
2 shows that energy and particles are almost conserved dur- DISCRETE NONLINEAR SCHRODINGER EQUATION

ing the migration process for the simple model of only two A statistical description of the equilibrium state of the

sites. From this, a thresholel=2 (Fig. 5) for the maximum  giscrete nonlinear Schrédinger equatids] is based on the
height of moving excitations can be derived. The trajectoryyrand partition function

of the migration can be computed analyticaliyig. 3) below
this threshold, while there is no such trajectory beyond this _B(H-
threshold(Fig. 4). e R y(B, V)ZJ e AT (A1)
Excitations in numerical experiments resemble the )
central-peak solution of Fig. 7 more than the isolated peak ofvhere the two parametefsand y reflect the conservation of
Fig. 5. This can be explained statistically: The DNLS is aH andA. An analytic approximation of this can be computed
nonintegrable dynamical system in which the excitations car the case of a low particle density. For any solution with a
absorb or emit low-amplitude waves. Excitations and low-low particle density(|¢,[*)=A/N<1, the amplitude has to
amplitude waves coexist in the equilibrium state where thde small|¢,|~ OVA/N at almost all lattice sites. High am-
entropy is maxima[16]. The entropy is maximal when the plitudes |¢,|> VA/N will occur at very few sites. For in-
low-amplitude waves contain as many particles as possibletance, the number of sites with amplitudg¢é~ O(1) is at
but no energy. Correspondingly, the excitations absorb thenost proportional t?A<N. At the sites where the amplitude
total energy using a minimum amount of particles. Theis small, the quartic energy contributide,|*/2 will be neg-
central-peak excitations of Fig. 7 have the highest possiblégible compared to quadratic contributiaﬂ]¢;+l+ ¢;¢>n+1.
ratio of energy per particle and are thermodynamically stabl®©n the other hand, the quartic contribution will prevail at
if the system’s total energy is positive. The interaction withhigh-amplitude sites.

IV. CONCLUSIONS
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This suggests to simplify the Hamiltonian by neglectingexchanged between the peaks and the waves. The canonic
the quartic energy contribution for low-amplitude excita- transformationS(H,A)=In y+B(H-~A) yields the leading
tions, and by neglecting the coupling energy for the highterm of the entropy
peaks. Introducing the bordee yA/N between “high” and

“low” amplitudes, the Hamiltonian can be approximated by S~NinQ (A2)
the sumH~H_+H.. of a low-amplitude contribution with Q=(4A%Z -H2)/(4A_N). This predominant contribution
B . to the entropy is due to the low-amplitude waves. The peaks’
He= 2 dubrart dnbun contribution to the entropy turns out to be negligible, but
|90l dryeal <7 they can absorb high amounts of energy. The inverse tem-
and a high-amplitude contribution perature Is
2H_N
Ho= X |olY2. B== 12 (A3)
[nl>r < <
Similarly, the particle number is divided in two compo- and the chemical potential is
nents asA=A_+A.. 4A2< + H2<
Using this separation of the energy and the particle num- V= OH A (A4)
<M<

ber, the integration of Eq(Al) can be carried out in the
high- and low-amplitude domain separately. The low-The entropy is maximal foH.~0, H.=~H, A_=A, A.
amplitude phase and the peaks are two thermodynamic sys=0. This corresponds to a single high peak that absorbs all
tems that are coupled by their common temperaiifeand  the energy, while the low-amplitude waves have a white
the chemical potential since particles and energy can be power spectrum and absorb all particles.
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